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México D.F. 07300, MÉXICO
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Abstract. This paper presents an improved version of a simple evolution strategy
(SES) to solve global nonlinear optimization problems. As its previous version,
the approach does not require the use of a penalty function, it does not require the
definition by the user of any extra parameter (besides those used with an evolution
strategy), and it uses some simple selection criteria to guide the process to the
feasible region of the search space. Unlike its predecessor, this new version uses
a multimembered Evolution Strategy (ES) and an improved diversity mechanism
based on allowing infeasible solutions close to the feasible region to remain in the
population. This new version was validated using a well-known set of test fun-
ctions. The results obtained are very competitive when comparing the proposed
approach against the previous version and other approaches representative of the
state-of-the-art in constrained evolutionary optimization. Moreover, its computa-
tional cost (measured in terms of the number of fitness function evaluations) is
lower than the cost required by the other techniques compared.

1 Introduction

Evolutionary algorithms (EAs) have been successfully used to solve different types
of optimization problems [1]. However, in their original form, they lack an explicit
mechanism to handle the constraints of a problem. This has motivated the development of
a considerable number of approaches to incorporate constraints into the fitness function
of an EA [2,3]. Particularly, in this paper we are interested in the general nonlinear
programming problem in which we want to: Find x which optimizes f(x) subject to:
gi(x) ≤ 0, i = 1, . . . , n hj(x) = 0, j = 1, . . . , p where x is the vector of decision
variables x = [x1, x2, . . . , xr]T , n is the number of inequality constraints and p is the
number of equality constraints (in both cases, constraints could be linear or nonlinear).

The most common approach adopted to deal with constrained search spaces is the
use of penalty functions [4]. When using a penalty function, the amount of constraint
violation is used to punish or “penalize” an infeasible solution so that feasible solutions
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are favored by the selection process. Nonetheless, the main drawback of penalty functions
is that they require a careful fine tuning of the penalty factors that accurately estimates
the degree of penalization to be applied so that we can approach efficiently the feasible
region [3].

The algorithm presented in this paper is an improved version of two previous ap-
proaches. The first version [5] was based on a (µ + 1) Evolution Strategy coupled with
three simple selection criteria based on feasibility to guide the search to the feasible
region of the search space. A second version of the approach was proposed in [6] but
now using a (1 + λ)-ES and adding a diversity mechanism which consisted of allowing
solutions with a good value of the objective function to remain as a new starting point
in the next generation of the search, regardless of feasibility. The version presented in
this paper still uses the self-adaptive mutation mechanism of an ES, but we now adopt
a multimembered (µ + λ)-ES to explore constrained search spaces. This mechanism is
combined with the same three simple selection criteria used before to guide the search
towards the global optima of constrained optimization problems [6]. However, we now
add an improved diversity mechanism which, although simple, provides a significant
improvement in terms of performance. The idea of this mechanism is to allow the in-
dividual with both the lowest amount of constraint violation and the best value of the
objective function to be selected for the next generation. This solution can be chosen with
a 50% of probability either from the parents or from the offspring population. With the
combination of the above elements, the algorithm first focuses on reaching the feasible
region of the search space.After that, it is capable of moving over the feasible region as to
reach the global optimum. The infeasible solutions that remain in the population are then
used to sample points in the boundaries between the feasible and the infeasible regions.
Thus, the main focus of this paper is to show how a multimembered ES coupled with
the previously described diversity mechanism, has a highly competitive performance in
constrained problems when compared with respect to algorithms representative of the
state-of-the-art in the area.

This paper is organized as follows: In Section 2 a description of previous approaches
based on similar ideas to our own is provided. Section 3 includes the description of the
diversity mechanism that we propose. Then, in Section 4, we present the results obtained
and also a comparison against the previous version and state-of-the-art algorithms. Such
results are discussed in Section 5. Finally, in Section 6 we provide some conclusions
and possible paths for future research.

2 Related Work

The hypothesis that originated this work is the following: (1) The self-adaptation me-
chanism of an ES helps to sample the search space well enough as to reach the feasible
region reasonably fast and (2) the simple addition of simple selection criteria based on
feasibility to an ES should be enough to guide the search in such a way that the global
optimum can be approached efficiently.

The three simple selection criteria used are the following:

1. Between 2 feasible solutions, the one with the highest fitness value wins (assuming
a maximization problem/task).



702 E. Mezura-Montes and C.A. Coello Coello

2. If one solution is feasible and the other one is infeasible, the feasible solution wins.
3. If both solutions are infeasible, the one with the lowest sum of constraint violation

is preferred.

The use of these criteria has been explored by other authors. Jiménez and Verde-
gay [7] proposed an approach similar to a min-max formulation used in multiobjective
optimization combined with tournament selection. The rules used by them are similar to
those adopted in this work. However, Jiménez and Verdegay’s approach lacks an explicit
mechanism to avoid the premature convergence produced by the random sampling of
the feasible region because their approach is guided by the first feasible solution found.
Deb [8] used the same tournament rules previously indicated in his approach. However,
Deb proposed to use niching as a diversity mechanism, which introduces some extra
computational time (niching has time-complexity O(N2)). In Deb’s approach, feasible
solutions are always considered better than infeasible ones. This contradicts the idea of
allowing infeasible individuals to remain in the population. Therefore, this approach will
have difficulties in problems in which the global optimum lies on the boundary between
the feasible and the infeasible regions.

Motivated by the fact that some of the most recent and competitive approaches to
incorporate constraints into an EA use an ES (see for example [9,10]), we proposed [5]
a Simple (µ + 1) Evolution Strategy (SES) to solve constrained optimization problems
in which one child created from µ mutations of the current solution competes against it
and the better one is selected as the new current solution. This approach is based on the
two mechanisms previously indicated.

However, the approach in [5] used to get trapped in local optimum solutions. Thus,
in order to improve the quality and robustness of the results, a diversity mechanism was
added in [6]. In this case, a (1+λ)-ES was adopted and the diversity mechanism consisted
on allowing solutions with a good value of the objective function to remain as a new
starting point for the search at each generation, regardless of feasibility. Additionally,
we introduced a self-adaptive parameter called Selection Ratio (Sr), which refers to
the percentage of selections that will be performed in a deterministic way (as used in
the first version of the SES [5] where the child replaces the current solution based on
the three selection criteria previously indicated). In the remaining 1 − Sr selections,
there were two choices: (1) either the individual (out of the λ) with the best value of
the objective function would replace the current solution (regardless of its feasibility)
or (2) the best parent (based on the three selection criteria) would replace the current
solution. Both options are given a 50% probability each. The results improved, but for
some test problems no feasible solutions could be found and for other functions the
statistical results did not show enough robustness.

3 The New Diversity Mechanism

The two previous versions of the algorithm [5,6] are based on a single-membered ES
and they lack the explorative power to sample large search spaces. Thus, we decided to
re-evaluate the use of a (µ + λ)-ES to solve this limitation, but in this case, improving
the diversity mechanism implemented in the second version of our approach [6] and
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eliminating the use of the self-adaptive Sr parameter. The new version of the SES is
based on the same concepts that its predecessors as discussed before.

The detailed features of the improved diversity mechanism are the following:At each
generation, we allow the infeasible individual with the best value of the objective function
and with the lowest amount of constraint violation to survive for the next generation.
We call this solution the best infeasible solution. In fact, there are two best infeasible
solutions at each generation, one from the µ parents and one from the λ offspring. Either
of them can be chosen with a 50% of probability. With 0.03 probability, the selection
process will choose the best infeasible individual with equal probability to be the best
infeasible parent or the best infeasible offspring.

Therefore, the same best infeasible solution can be copied more than once into
the next population. However, this is a desired behavior because a few copies of this
solution will allow its recombination with several solutions in the population, specially
with feasible ones. Recombining feasible solutions with infeasible solutions in promising
areas (based on the good value of the objective function) and close to the boundary of
the feasible region will allow the ES to reach global optimum solutions located in the
boundary of the feasible region of the search space (which are known to be the most
difficult solutions to reach). See Figure 1.

Feasible Region

Boundaries

Best infeasible solution

Feasible solutions

Possible crossover

Fig. 1. Diagram that illustrates the idea of searching the boundaries with the new diversity mecha-
nism proposed in this paper.

When the selection process occurs, the best individuals among the parents and
offspring are selected based on the three selection criteria previously indicated. The
selection process will pick feasible solutions with a better value of the objective func-
tion first, followed by infeasible solutions with a lower constraint violation. However,
3 times from every 100 picks, the best infeasible solution (from either the parents or
the offspring population with a 50% of probability each) the best infeasible solution is
copied in the population for the next generation. The pseudocode is listed in Figure 2.
We chose the value of 3 based on the previous version [6] which used a population of
just 3 offspring. With this low number of solutions, the approach provided good results.
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function selection()
For i=1 to µ Do

If flip(0.97)
Select the best individual based on the selection criteria from the union
of the parents and offspring population, add it to the population for the
next generation and delete it from this union.

Else
If flip(0.5)

Select the best infeasible individual from the parents population and
add it to the population for the
next generation.

Else
Select the best infeasible individual from the offspring population and
add it to the population for
the next generation.

End If
End If

End For
End

Fig. 2. Pseudocode of the selection procedure with the diversity mechanism incorporated. flip(P )
is a function that returns TRUE with probability P

4 Experiments and Results

To evaluate the performance of the proposed approach we used the 13 test functions
described in [9]. The test functions chosen contain characteristics that are representative
of what can be considered “difficult” global optimization problems for an evolutionary
algorithm. Their expressions are provided in the Appendix at the end of this paper.

To get an estimate of the ratio between the feasible region and the entire search
space for these problems, a ρ metric (as suggested by Michalewicz and Schoenauer [2])
was computed using the following expression: ρ = |F |/|S| where |F | is the number of
feasible solutions and |S| is the total number of solutions randomly generated. In this
work, S = 1, 000, 000 random solutions.
The different values of ρ for each of the functions chosen are shown in Table 4, where n is
the number of decision variables, LI is the number of linear inequalities, NI the number
of nonlinear inequalities, LE is the number of linear equalities and NE is the number
of nonlinear equalities. We performed 30 independent runs for each test function. The
learning rates values were calculated using the formulas proposed by Schwefel [12]
(where n is the number of decision variables of the problem): τ = (

√
2
√

n)−1 and
τ ′ = (

√
2n)−1. In order to favor finer movements in the search space (as we observed

in the previous versions of the approach where only one sigma value was used and
when it had values close to zero the improvements of the result increased) we decided
to experiment with just a percentage of the quantity obtained by the formula proposed
by Schwefel [12]. We initialized the sigma values for all the individuals in the initial
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Table 1. Statistical results obtained by our SES for the 13 test functions with 30 independent runs.
A result in boldface means global optimum solution found.

Statistical Results of the New SES with the Improved Diversity Mechanism
Problem Optimal Best Mean Median Worst St. Dev.

g01 −15.00 −15.00 −15.00 −15.00 −15.00 0
g02 0.803619 0.803601 0.785238 0.792549 0.751322 1.67E-2
g03 1.00 1.00 1.00 1.00 1.00 2.09E-4
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 0
g05 5126.498 5126.599 5174.492 5160.198 5304.167 50.05E+0
g06 −6961.814 −6961.814 −6961.284 −6961.814 −6952.482 1.85E+0
g07 24.306 24.327 24.475 24.426 24.843 1.32E-1
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0
g09 680.630 680.632 680.643 680.642 680.719 1.55E-2
g10 7049.25 7051.90 7253.05 7253.60 7638.37 136.0E+0
g11 0.75 0.75 0.75 0.75 0.75 1.52E-4
g12 1.00 1.00 1.00 1.00 1.00 0
g13 0.053950 0.053986 0.166385 0.061873 0.468294 1.76E-1

Table 2. Comparison of results between the new SES and the old one proposed in [6]. “-” means
no feasible solutions were found. A result in boldface means a better value obtained by our new
approach.

Best Result Mean Result Worst Result
Problem Optimal NEW SES OLD NEW SES OLD NEW SES OLD

g01 −15.00 −15.00 −15.00 −15.00 −15.00 −15.00 −15.00
g02 0.803619 0.803601 0.803569 0.785238 0.769612 0.751322 0.702322
g03 1.00 1.00 1.00 1.00 1.00 1.00 1.00
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539
g05 5126.498 5126.599 − 5174.492 − 5304.167 −
g06 −6961.814 −6961.814 −6961.814 −6961.284 −6961.814 −6952.482 −6961.814
g07 24.306 24.327 24.314 24.475 24.419 24.843 24.561
g08 0.095825 0.095825 0.095825 0.095825 0.095784 0.095825 0.095473
g09 680.630 680.632 680.669 680.643 680.810 680.719 681.199
g10 7049.25 7051.90 7057.04 7253.05 10771.42 7638.37 16375.27
g11 0.75 0.75 0.75 0.75 0.75 0.75 0.76
g12 1.00 1.00 1.00 1.00 1.00 1.00 1.00
g13 0.053950 0.053986 0.053964 0.166385 0.264135 0.468294 0.544346

Table 3. Comparison of the new version of the SES with respect to the Homomorphous Maps
(HM) [11]. “-” means no feasible solutions were found. A result in boldface means a better value
obtained by our new approach.

Best Result Mean Result Worst Result
Problem Optimal New SES HM New SES HM New SES HM

g01 −15.00 −15.00 −14.7886 −15.00 −14.7082 −15.00 −14.6154
g02 0.803619 0.803601 0.79953 0.785238 0.79671 0.751322 0.79119
g03 1.00 1.00 0.9997 1.00 0.9989 1.00 0.9978
g04 −30665.539 −30665.539 −30664.5 −30665.539 −30655.3 −30665.539 −30645.9
g05 5126.498 5126.599 − 5174.492 − 5304.167 −
g06 −6961.814 −6961.814 −6952.1 −6961.284 −6342.6 −6952.482 −5473.9
g07 24.306 24.327 24.620 24.475 24.826 24.843 25.069
g08 0.095825 0.095825 0.0958250 0.095825 0.0891568 0.095825 0.0291438
g09 680.63 680.632 680.91 680.643 681.16 680.719 683.18
g10 7049.25 7051.90 7147.9 7253.05 8163.6 7638.37 9659.3
g11 0.75 0.75 0.75 0.75 0.75 0.75 0.75
g12 1.00 1.00 0.999999 1.00 0.999134 1.00 0.991950
g13 0.053950 0.053986 NA 0.166385 NA 0.468294 NA
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Table 4. Values of ρ for the 13 test problems chosen.

Problem n Function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0
g02 20 nonlinear 99.9973% 1 1 0 0
g03 10 nonlinear 0.0026% 0 0 0 1
g04 5 quadratic 27.0079% 0 6 0 0
g05 4 nonlinear 0.0000% 2 0 0 3
g06 2 nonlinear 0.0057% 0 2 0 0
g07 10 quadratic 0.0000% 3 5 0 0
g08 2 nonlinear 0.8581% 0 2 0 0
g09 7 nonlinear 0.5199% 0 4 0 0
g10 8 linear 0.0020% 3 3 0 0
g11 2 quadratic 0.0973% 0 0 0 1
g12 3 quadratic 4.7697% 0 93 0 0
g13 5 nonlinear 0.0000% 0 0 1 2

population with only a 40% of the value obtained by the following formula (where n is
the number of decision variables): σi(0) = 0.4×(∆xi/

√
n) where ∆xi is approximated

with the expression (suggested in [9]), ∆xi ≈ xu
i − xl

i, where xu
i − xl

i are the upper
and lower limits of the decision variable i. For the experiments we used the following
parameters: (100+300)-ES, number of generations = 800, number of objective function
evaluations = 240, 000.

To increase the exploitation feature of the global crossover operator we combine
discrete and intermediate crossover. Each gene in the chromosome can be processed with
any of these two crossover operators with a 50% of probability. This operator is applied
to both, strategy parameters (sigma values) and decision variables of the problem. Note
that we do not use correlated mutation. To deal with equality constraints, a parameterless
dynamic mechanism originally proposed in ASCHEA [10] and used in [5] and in [6]
is adopted. The tolerance value ε is decreased with respect to the current generation
using the following expression: εj(t + 1) = εj(t)/1.00195. The initial ε0 was set to
0.001. For problem g13, ε0 was set to 3.0 and, in consequence, the factor to decrease
the tolerance value was modified to εj(t + 1) = εj(t)/1.0145. Also, for problems g03
and g13 the initial stepsize required a more dramatic decrease of the stepsize. They were
defined as 0.01 (just a 5% instead of the 40%) for g03 and 0.05 (a 2.5% instead of the
40%) for g13. These two test functions seem to provide better results with very smooth
movements. It is important to note that these two problems share the following features:
moderately high dimensionality (five or more decision variables), nonlinear objective
function, one or more equality constraints, and moderate size of the search space (based
on the range of the decision variables). These common features suggest that for this
type of problem, finer movements provide a better sampling of the search space using
an evolution strategy.

The statistical results of this new version of the SES with the improved diversity
mechanism are summarized in Table 1. The comparison of the improved version against
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the previous one [6] is presented in Table 2. We compared our approach against the
previous version of the SES [6] in Table 2 and against three state-of-the-art approaches:
the Homomorphous Maps (HM) [11] in Table 3, Stochastic Ranking (SR) [9] in Table 5
and theAdaptive Segregational Constraint Handling EvolutionaryAlgorithm (ASCHEA)
[10] in Table 6.

The Homomorphous Maps performs a homomorphous mapping between an n-
dimensional cube and the feasible search region (either convex or non-convex). The
main idea of this approach is to transform the original problem into another (topolo-
gically equivalent) function that is easier to optimize by the EA. Both, the Stochastic
Ranking and ASCHEA are based on a penalty function approach. SR sorts the indivi-
duals in the population in order to assign them a rank value. However, based on the
value of a user-defined parameter, the comparison between two adjacent solutions will
be performed using only the objective function. The remaining comparisons will be per-
formed using only the penalty value (the sum of constraint violation). ASCHEA uses
three combined mechanisms: (1) an adaptive penalty function, (2) a constraint-driven
recombination that forces to select a feasible individual to recombine with an infeasible
one and (3) a segregational selection based on feasibility which maintains a balance
between feasible and infeasible solutions in the population. ASCHEA also requires a
niching mechanism to improve the diversity in the population. Each mechanism requires
the definition by the user of extra parameters.

Table 5. Comparison of our new version of the SES with respect to Stochastic Ranking (SR) [9].
A result in boldface means a better value obtained by our new approach.

Best Result Mean Result Worst Result
Problem Optimal New SES SR New SES SR New SES SR

g01 −15.00 −15.00 −15.000 −15.00 −15.000 −15.00 −15.000
g02 0.803619 0.803601 0.803515 0.785238 0.781975 0.751322 0.726288
g03 1.00 1.00 1.000 1.00 1.000 1.00 1.000
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539
g05 5126.498 5126.599 5126.497 5174.492 5128.881 5304.165 5142.472
g06 −6961.814 −6961.814 −6961.814 −6961.284 −6875.940 −6952.482 −6350.262
g07 24.306 24.327 24.307 24.475 24.374 24.843 24.642
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.632 680.630 680.643 680.656 680.719 680.763
g10 7049.25 7051.90 7054.316 7253.05 7559.192 7638.37 8835.655
g11 0.75 0.75 0.750 0.75 0.750 0.75 0.750
g12 1.00 1.00 1.00 1.00 1.00 1.00 1.00
g13 0.053950 0.053986 0.053957 0.166385 0.057006 0.468294 0.216915

5 Discussion of Results

As described in Table 1, our approach was able to find the global optimum in seven test
functions (g01, g03, g04, g06, g08, g11 and g12) and it found solutions very close to the
global optimum in the remaining six (g02, g05, g07, g09, g10, g13). Compared with its
previous version [6] (Table 2) this new diversity mechanism improved the quality of the
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results in problems g02, g05, g09 and g10. Also, the robustness of the results was better
in problems g02, g05, g08, g09, g10 and g13.

Table 6. Comparison of our new version of the SES with respect to ASCHEA [10]. NA = Not
Available. A result in boldface means a better value obtained by our new approach.

Best Result Mean Result Worst Result
Problem Optimal New SES ASCHEA New SES ASCHEA New SES ASCHEA

g01 −15.0 −15.00 −15.0 −15.00 −14.84 −15.00 NA
g02 0.803619 0.803601 0.785 0.785238 0.59 0.751322 NA
g03 1.00 1.00 1.0 1.00 0.99989 1.00 NA
g04 −30665.539 −30665.539 30665.5 −30665.539 30665.5 −30665.539 NA
g05 5126.498 5126.599 5126.5 5174.492 5141.65 5304.167 NA
g06 −6961.814 −6961.814 −6961.81 −6961.284 −6961.81 −6952.482 NA
g07 24.306 24.327 24.3323 24.475 24.66 24.843 NA
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 NA
g09 680.630 680.632 680.630 680.643 680.641 680.719 NA
g10 7049.25 7051.90 7061.13 7253.05 7193.11 7638.37 NA
g11 0.75 0.75 0.75 0.75 0.75 0.75 NA
g12 1.00 1.00 NA 1.00 NA 1.00 NA
g13 0.053950 0.053986 NA 0.166385 NA 0.468294 NA

When compared with respect to the three state-of-the-art techniques previously indi-
cated, we found the following: Compared with the Homomorphous Maps (Table 3) the
new SES found a better “best” solution in ten problems (g01, g02, g03, g04, g05, g06,
g07, g09, g10 and g12) and a similar “best” result in other two (g08 and g11). Also, our
technique reached better “mean” and “worst” results in ten problems (g01, g03, g04,
g05, g06, g07, g08, g09, g10 and g12). A “similar” mean and worst result was found
in problem g11. The Homomorphous maps found a “better” mean and worst result in
function g02. No comparisons were made with respect to function g13 because such
results were not available for HM.

With respect to Stochastic Ranking (Table 5), our approach was able to find a better
“best” result in functions g02 and g10. In addition, it found a “similar” best solution in
seven problems (g01, g03, g04, g06, g08, g11 and g12). Slightly better “best” results
were found by SR in the remaining functions (g05, g07, g09 and g13). The new SES
found better “mean” and “worst” results in four test functions (g02, g06, g09 and g10).
It also provided similar “mean” and “worst” results in six functions (g01, g03, g04, g08,
g11 and g12). Finally, SR found again just slightly better “mean” and “worst” results in
functions g05, g07 and g13.

Compared against the Adaptive Segregational Constraint Handling Evolutionary
Algorithm (Table 6), our algorithm found “better” best solutions in three problems (g02,
g07 and g10) and it found “similar” best results in six functions (g01, g03, g04, g06, g08,
g11).ASCHEA found slightly “better” best results in function g05 and g09.Additionally,
the new SES found “better” mean results in four problems (g01, g02, g03 and g07) and it
found “similar” mean results in three functions (g04, g08 and g11). ASCHEA surpassed
our mean results in four functions (g05, g06, g09 and g10). We did not compare the worst
results because they were not available for ASCHEA. We did not perform comparisons
with respect to ASCHEA using functions g12 and g13 for the same reason. As we can
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see, our approach showed a very competitive performance with respect to these three
state-of-the-art approaches.

Our approach can deal with moderately constrained problems (g04), highly con-
strained problems, problems with low (g06, g08), moderated (g09) and high (g01, g02,
g03, g07) dimensionality, with different types of combined constraints (linear, nonli-
near, equality and inequality) and with very large (g02), very small (g05 and g13) or
even disjoint (g12) feasible regions. Also, the algorithm is able to deal with large search
spaces (based on the intervals of the decision variables) with a very small feasible region
(g10). Furthermore, the approach can find the global optimum in problems where such
optimum lies on the boundaries of the feasible region (g01, g02, g04, g06, g07, g09).
This behavior suggests that the mechanism of maintaining the best infeasible solution
helps the search to sample the boundaries of the feasible region.

Besides still being a very simple approach, it is worth reminding that our algorithm
does not require the fine-tuning of any extra parameters (other than those used with an
evolution strategy) since the only parameters required by the approach have remained
fixed in all cases. In contrast, the Homomorphous maps require an additional parameter
(called v) which has to be found empirically [11]. Stochastic ranking requires the defini-
tion of a parameter called Pf , whose value has an important impact on the performance
of the approach [9]. ASCHEA also requires the definition of several extra parameters,
and in its latest version, it uses niching, which is a process that also has at least one
additional parameter [10].

The computational cost measured in terms of the number of fitness function eva-
luations (FFE) performed by any approach is lower for our algorithm with respect to
the others to respect to which it was compared. This is an additional (and important)
advantage, mainly if we wish to use this approach for solving real-world problems. Our
new approach performed 240, 000 FFE, the previous version required 330, 000 FFE,
the Stochastic Ranking performed 350, 000 FFE, the Homomorphous Maps performed
1, 400, 000 FFE, and ASCHEA required 1, 500, 000 FFE.

6 Conclusions and Future Work

An improved diversity mechanism added to a multimembered Evolution Strategy com-
bined with some selection criteria based on feasibility were proposed to solve (rather
efficiently) constrained optimization problems. The proposed approach does not require
the use of a penalty function and it does not require the fine-tuning of any extra pa-
rameters (other than those required by an evolution strategy), since they assume fixed
values. The proposed approach uses the self-adaptation mechanism of a multimembered
ES to sample the search space in order to reach the feasible region and it uses three
simple selection criteria based on feasibility to guide the search towards the global op-
timum. Moreover, the proposed technique adopts a diversity mechanism which consists
of allowing infeasible solutions close to the boundaries of the feasible region to remain
in the next population. This approach is very easy to implement and its computational
cost (measured in terms of the number of fitness function evaluations) is considera-
bly lower than the cost reported by other three constraint-handling techniques which
are representative of the state-of-the-art in evolutionary optimization. Despite its lower
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computational cost, the proposed approach was able to match (and even improve) on the
results obtained by the other algorithms with respect to which it was compared.

As part of our future work, we plan to evaluate the rate at which our algorithm
reaches the feasible region. This is an important issue when dealing with real-world
applications, since in highly constrained search spaces, reaching the feasible region
may be a rather costly task. Additionally, we have to perform more experiments in
order to establish which of the three mechanisms of the approach (diversity mechanism,
combined crossover or the reduced stepsize) is mandatory or if only their combined
effect makes the algorithm work.
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Appendix: Test Functions

1. g01: Minimize: f(x) = 5
∑4

i=1 xi − 5
∑4

i=1 x2
i − ∑13

i=5 xi subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0, g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0, g4(x) = −8x1 + x10 ≤ 0,

g5(x) = −8x2 + x11 ≤ 0, g6(x) = −8x3 + x12 ≤ 0, g7(x) = −2x4 − x5 + x10 ≤ 0,

g8(x) = −2x6 − x7 + x11 ≤ 0, g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and
0 ≤ x13 ≤ 1. The global optimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where
f(x∗) = −15. Constraints g1, g2, g3, g4, g5 and g6 are active.

2. g02: Maximize: f(x) =
∣
∣
∣
∣

∑n
i=1 cos4(xi)−2

∏n
i=1 cos2(xi)√∑n

i=1 ix2
i

∣
∣
∣
∣ subject to:

g1(x) = 0.75 −
n∏

i=1

xi ≤ 0, g2(x) =
n∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown;
the best reported solution is [9] f(x∗) = 0.803619. Constraint g1 is close to being active
(g1 = −10−8).

3. g03: Maximize: f(x) = (
√

n)n ∏n
i=1 xi subject to: h(x) =

∑n
i=1 x2

i − 1 = 0 where n =
10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is at x∗

i = 1/
√

n (i = 1, . . . , n)
where f(x∗) = 1.

4. g04: Minimize: f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to:
g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0
g2(x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0
g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3 − 110 ≤ 0
g4(x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2

3 + 90 ≤ 0
g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0
g6(x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0
where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution
is x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) where f(x∗) = −30665.539.
Constraints g1 y g6 are active.

5. g05: Minimize:f(x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2 subject to: g1(x) =
−x4 + x3 − 0.55 ≤ 0, g2(x) = −x3 + x4 − 0.55 ≤ 0
h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0
h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0
h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0 where 0 ≤
x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and −0.55 ≤ x4 ≤ 0.55. The best
known solution is x∗ = (679.9453, 1026.067, 0.1188764, −0.3962336) where f(x∗) =
5126.4981.
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6. g06: Minimize: f(x) = (x1 − 10)3 + (x2 − 20)3 subject to: g1(x) = −(x1 − 5)2 − (x2 −
5)2 +100 ≤ 0, g2(x) = (x1 −6)2 +(x2 −5)2 −82.81 ≤ 0 where 13 ≤ x1 ≤ 100 and 0 ≤
x2 ≤ 100. The optimum solution is x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388.
Both constraints are active.

7. g07: Minimize: f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 +
(x5 − 3)2 + 2(x6 − 1)2 + 5x2

7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
subject to: g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0, g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
g6(x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
g8(x) = −3x1+6x2+12(x9−8)2−7x10 ≤ 0 where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The
global optimum is x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, 8.375927) where f(x∗) = 24.3062091. Constraints g1, g2,
g3, g4, g5 and g6 are active.

8. g08: Maximize: f(x) = sin3(2πx1) sin(2πx2)
x3
1(x1+x2)

subject to: g1(x) = x2
1 −x2 +1 ≤ 0, g2(x) = 1−x1 +(x2 −4)2 ≤ 0 where 0 ≤ x1 ≤ 10

and 0 ≤ x2 ≤ 10. The optimum solution is located at x∗ = (1.2279713, 4.2453733) where
f(x∗) = 0.095825.

9. g09: Minimize: f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 +

x4
7 − 4x6x7 − 10x6 − 8x7

subject to: g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0, g2(x) = −282 + 7x1 +

3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196+23x1 +x2
2 +6x2

6 − 8x7 ≤ 0, g4(x) = 4x2
1 +x2

2 − 3x1x2 +2x2
3 +5x6 −

11x7 ≤ 0 where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is x∗ = (2.330499,
1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131, 1.594227) where f(x∗) =
680.6300573. Two constraints are active (g1 and g4).

10. g10: Minimize: f(x) = x1 + x2 + x3 subject to: g1(x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0, g3(x) = −1 + 0.01(x8 − x5) ≤ 0
g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0 where 100 ≤ x1 ≤ 10000, 1000 ≤
xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000, (i = 4, . . . , 8). The global optimum is: x∗ =
(579.19, 1360.13, 5109.92, 182.0174, 295.5985, 217.9799, 286.40, 395.5979), where
f(x∗) = 7049.25. g1, g2 and g3 are active.

11. g11: Minimize: f(x) = x2
1+(x2−1)2 subject to: h(x) = x2−x2

1 = 0where: −1 ≤ x1 ≤ 1,
−1 ≤ x2 ≤ 1. The optimum solution is x∗ = (±1/

√
2, 1/2) where f(x∗) = 0.75.

12. g12: Maximize: f(x) = 100−(x1−5)2−(x2−5)2−(x3−5)2

100 subject to: g1(x) = (x1 − p)2 +
(x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0 where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r =
1, 2, . . . , 9. The feasible region of the search space consists of 93 disjointed spheres. A point
(x1, x2, x3) is feasible if and only if there exist p, q, r such the above inequality (12) holds.
The global optimum is located at x∗ = (5, 5, 5) where f(x∗) = 1.

13. g13: Minimize: f(x) = ex1x2x3x4x5 subject to: h1(x) = x2
1 +x2

2 +x2
3 +x2

4 +x2
5 −10 = 0

h2(x) = x2x3 −5x4x5 = 0, h3(x) = x3
1 +x3

2 +1 = 0 where −2.3 ≤ xi ≤ 2.3 (i = 1, 2)
and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The optimum solution is x∗ = (−1.717143, 1.595709,

1.827247, −0.7636413, −0.763645) where f(x∗) = 0.0539498.
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